EECS 16B Section 6B
Main Topic: Bandpass Filturs \& Bote Prots
Administrivia:

- HW 6 due Fri, $2 / 26$
- Anonymous Feedbad.
bit.ly/maxwell-16B-feedback -sp21
Agenda:
- Resonance
- Q1: Resonant Bandpass Filter
- Bandpass vs. Resonant Bandpass
- Log plots, Bodr Plot Approx.
- Q2: Straight-Line Apporx.
- Module I Recap

Resonance

- Phenomenon when a system experiences HIGH amplituite when at or wear the waturad frequency of the system.
- Analogies:
- Opera singer breaks glass at certain pitch
- "Sweet Spot" in tennis or golf
- Electrical resonance in LC circuits

1. Band-pass filter

It is quite common to need to design a filter which selects only a narrow range of frequencies. One example is in WiFi radios, it is desirable to select only the 2.4 GHz frequency containing your data, and reject information from other nearby cellular or bluetooth frequencies. This type of filter is called a band-pass filter; we will explore the design of this type of filter in this problem.

(a) Write down the impedance of the series RLC combination in the form $Z_{R L C}(\omega)=A(\omega)+j X(\omega)$, where $A(\omega)$ and $X(\omega)$ are real valued functions of ω.

$$
A=R
$$

$$
\begin{aligned}
Z_{R L C} & =z_{R}+z_{L}+z_{c} \\
& =R+j w L+\left(\left.\frac{1}{j w c} \quad \lambda \quad \frac{1}{j} \right\rvert\,\right. \\
& =R+j \omega L-\frac{j}{w c} \\
& =R+j w L-\frac{j}{\omega c} \quad \left\lvert\, \begin{array}{l}
A=R \\
\times=w L-\frac{1}{w e}
\end{array}\right.
\end{aligned}
$$

(b) Write down the transfer function $H(\omega)=\frac{\widetilde{V}_{\text {out }}(\omega)}{\widetilde{V}_{\text {in }}(\omega)}$ for this circuit.

$$
\begin{aligned}
& Z_{R L C}=R+j \omega L-\frac{j}{w c} \\
& \tilde{V}_{\text {out }}=\frac{Z_{R}}{Z_{R L C}} \tilde{V}_{\text {in }} \\
& {\tilde{V_{\text {ont }}}}_{\widetilde{V}_{\text {in }}}=H(w)=\frac{R}{R_{+j w L-\frac{j}{w C}}}
\end{aligned}
$$

(c) At what frequency ω_{n} does $X\left(\omega_{n}\right)=0$? (i.e. at what frequency is the impedance of the series combination of RLC purely real - meaning that the imaginary terms coming from the capacitor and inductor completely cancel each other. This is called the natural frequency.)

What happens to the relative magnitude of the impedances of the capacitor and inductor as ω moves above and below ω_{n} ? What is the value of the transfer function at this frequency ω_{n} ?
w_{n}, s.t. Z_{L} cancels out Z_{c}

$$
\begin{array}{r}
x[w]=w L-\frac{1}{w c}=0 \\
\left(w L=\frac{1}{w c}\right] \frac{w}{L} \\
w^{2}=\frac{1}{L c} \Rightarrow
\end{array}
$$

$$
w_{n}=\sqrt{\frac{1}{L C}}
$$

$$
\begin{aligned}
H\left(w_{n}\right) & =\frac{R}{R+j\left(\ln L-\frac{1}{\ln _{n}}\right)} \\
& =\frac{R}{R+j\left(L \sqrt{\frac{1}{L C}}-\frac{1}{C \sqrt{\frac{L}{L C}}}\left(\frac{\sqrt{\frac{1}{L}}}{\sqrt{L C}}\right)\right.} \\
& \left.=\frac{R}{R+j L \sqrt{\frac{1}{L C}}-\frac{\sqrt{\frac{L}{L}}}{\frac{L}{L}}}\right) \\
& =\frac{R}{R+j\left(L \sqrt{\frac{1}{L C}}-\sqrt{\frac{1}{L x}}\right)} \\
& =\frac{R}{R+\theta_{j}}=\frac{R}{R}=1 .
\end{aligned}
$$

A stans
the same

$$
\begin{array}{ll}
x=\omega L-\frac{1}{w c} & |w| \downarrow\left|-\frac{1}{w C}\right| \uparrow \\
w \ll w_{n} & x \cong-\frac{1}{w C} \\
l_{w \rightarrow 0} & \quad|w L| \uparrow\left|-\frac{1}{w c}\right| \downarrow
\end{array}
$$

$$
w_{w} \supset \rightarrow w_{n} ;
$$

$$
x \cong w L
$$

(e) Simplify $X(\omega)$ in two cases, when $\omega \rightarrow \infty$ and when $\omega \rightarrow 0$. Plug this simplified $X(\omega)$ into your previously solved expressions to find the transfer function at high and low frequencies.

$$
x(w)=w L-\frac{1}{w c}, \quad H(w)=\frac{R}{R+j\left(w L-\frac{1}{w c}\right)}
$$

$w \rightarrow \infty: X(w) \cong w L$

$$
\begin{aligned}
& H(\omega)=\frac{R}{R+j(\omega L)}=\frac{R}{R+j \omega L}=\frac{1}{1+j \omega \frac{L}{R}} \\
& w_{c}=\frac{R}{L} \quad(1) \begin{array}{l}
w=0: \frac{1}{1}=1 \\
w=\infty: \frac{1}{\infty}=0 \text { Low } \\
w=\operatorname{losss}
\end{array}
\end{aligned}
$$

$$
\frac{1}{1+\frac{j w}{w c}}
$$

$$
\left.\frac{1}{1+j w\left[\frac{\frac{1}{R}}{L}\right.}\right]
$$

$w \rightarrow \theta: \times(w) \cong-\frac{1}{w c}$
$H(w)=\frac{R}{R-j \frac{1}{w e}}=\frac{1}{1-j \frac{1}{w e}}$
\gtrless

$$
\begin{aligned}
& w=0: \frac{1}{\infty}=0 \\
& w=\infty: \frac{1}{1}=1
\end{aligned}
$$

Before we stang into the problem, let's consider a modification of the magnitude plot that will help us work y th multiple magnitudrplots at once. Namely, instead of plotting $|H(\omega)|$ vs. ω where the y-axis is on a logarithmic scale, we plot $20 \log _{10}(|H(\omega)|)$ vs. ω instead, and now the y-axis is on a linear scale.
The reason that we do this is that, when combining transfer functions, we end up multiplying them. But we really want to add two plots graphically, not multiply them, so we will just plot and add the logarithms. She constant multiple 20 is there for convention reasons.) Here's what this looks like, with the old grid on the left, and the new grid on the right:

Plot of $\left|H_{1}(\omega)\right|$.

Plot of $\left|H_{1}(\omega)\right|$.

Properties of Logarithms

$$
\begin{aligned}
& \log _{a} b=x \leftrightarrow a^{x}=b
\end{aligned}
$$

$$
\begin{aligned}
& \log _{10} 10^{3}=3 \\
& \log _{2} 16=4 \\
& \begin{array}{l}
\log _{2} 64=\log _{1} 16+\log _{2} 4=4+2=6 \\
\log _{10}\left(H_{1} D+20 \log _{10}\left(H_{2} D\right)\right.
\end{array}
\end{aligned}
$$

We learned in the previous discussion that the transfer function is given by

$$
H_{1}(\omega)=\frac{\widetilde{V}_{\mathrm{out}, 1}}{\widetilde{V}_{\mathrm{in}, 1}}=\frac{1}{1+j \omega \frac{L}{R_{1}}},
$$

the cutoff frequency $\omega_{c, 1}$ is given by

$$
\omega_{c, 1}=\frac{R_{1}}{L}=\frac{100 \Omega}{100 \mu \mathrm{H}}=1 \times 10^{6} \frac{\mathrm{rad}}{\mathrm{~s}},
$$

and plots of the transfer function are given by
Magnitude: $w_{c}=$ "elbait

$$
-4 s \Longleftrightarrow w_{c}
$$

"elbows": 0.1 we 10wc

Plot of $\left|H_{1}(\omega)\right|$.

Plot of $\angle H_{1}(\omega)$.

(b) Consider the second half of the circuit:

We learned in the previous discussion that the transfer function is given by

$$
H_{2}(\omega)=\frac{\widetilde{V}_{\mathrm{out}, 2}}{\widetilde{V}_{\mathrm{in}, 2}}=\frac{j \omega R_{2} C}{1+j \omega R_{2} C}
$$

the cutoff frequency $\omega_{c, 2}$ is given by

$$
\omega_{c, 2}=\frac{1}{R_{2} C}=\frac{1}{(1 \mathrm{k} \Omega) \cdot(1 \mu \mathrm{~F})}=1 \times 10^{3} \frac{\mathrm{rad}}{\mathrm{~s}},
$$

and plots of the transfer function are given by
\square

Plot of $\left|H_{2}(\omega)\right|$.

Plot of $\angle H_{2}(\omega)$.

We learned in the previous discussion that the transfer function is

$$
H(\omega)=\frac{\widetilde{V}_{\text {out }}}{\widetilde{V}_{\text {in }}}=H_{1}(\omega) H_{2}(\omega)
$$

and the transfer function plots are given by

Plot of $\angle H(\omega)$.

On these grids, draw the Bode plots for magnitude and phase.
Hint: Recall that

$$
\begin{aligned}
20 \log _{10}(|H(\omega)|) & =20 \log _{10}\left(\left|H_{1}(\omega) H_{2}(\omega)\right|\right)=20 \log _{10}\left(\left|H_{1}(\omega)\right|\left|H_{2}(\omega)\right|\right) \\
& =20 \log _{10}\left(\left|H_{1}(\omega)\right|\right)+20 \log _{10}\left(\left|H_{2}(\omega)\right|\right) \\
\text { and } \angle H(\omega) & =\angle H_{1}(\omega)+\angle H_{2}(\omega) .
\end{aligned}
$$

Module 1
Key motivator: Time and Dymamics
Modorn dedbonics and computers are bwilt on Transistors
\longrightarrow "Switdros", but more compliated
(1) Powrer Consumption (R)
(2) Time dolay (C)

Connections to 16 A
Linductos,
 apacitors)

Annoying to Salve bry mabling problem easier

Systams of $D f f \in E_{q}$.
Phasors \downarrow
\Rightarrow Modwe 2
Fransfor fro + Fillars

bit.ly/maxwell-16B-feedback -sp21

